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Direct numerical simulation is used to determine the flows that occur as the 
Reynolds number, Re, is increased in a plane channel undergoing system rotation 
about a spanwise axis. (Plane Poiseuille flow occurs for zero rotation rate and low 
Be.) A constant system rotation speed of 0.5, non-dimensionalized with respect to  the 
bulk streamwise velocity and channel full width, is used throughout. The spectral 
numerical method solves the three-dimensional, time-dependent, incompressible 
Navier-Stokes cquations using periodic boundary conditions in the streamwise and 
spanwise directions. On increasing the Reynolds number above the temporally 
periodic wavy vortex regime, near Re = Me, (Re, = 88.6 is the critical Re for 
development of vortices), a second temporal frequency, w2, occurs in the flow that 
corresponds to slow, constant, spanwise motion of the vortices, superposed on the 
much faster, constant, streamwise motion of the wavy vortex waves. Curiously, w2 
is always frequency locked with the wavy vortex frequency w1 for the parameter 
range explored, although the locking ratio varies. At the slightly higher Re of 4.1 Re,, 
w2 is replaced by a new frequency o; that  corresponds to a modulation of the wavy 
vortices like that seen in modulated wavy Taylor vortex flow. However, unlike the 
Taylor-Couette geometry, the modulation frequency here can become frequency 
locked with the wavy vortex frequency. Increasing Re further to Re = 4.2 Re, results 
in the appearance of a second incommensurate modulation frequency w3,  yielding a 
quasi-periodic three-frequency flow, although there are only two frequencies (w; and 
w g )  present in the reference frame moving with the travelling wave associated with 
wl. At still higher Re (Re = 4.5 Re,), weak temporal chaos occurs. This flow is not 
turbulent however. Calculations of the instantaneous largest Lyapunov exponent, 
h(t) ,  and the spatial structure of small perturbations to the flow show that the chaos 
is driven by spanwise shear instability of the streamwise velocity component. At the 
highest Re of 6.7 Re, considered, quasi-coherent turbulent boundary layer structures 
occur as transient, secondary streamwise-oriented vortices in the viscous sublayer 
near the inviscidly unstable (high-pressure) wall. Calculations of h(t)  and the spatial 
structure of small perturbations to the flow show that the coherent structures are not 
caused by the local growth of small disturbances to  the flow. 

1. Introduction 
When plane channel flow is rotated about a spanwise axis (cf. figure l ) ,  streamwise- 
oriented vortices can develop when the Reynolds number, Re, exceeds a certain value 
and the rotation rate is in a certain range. At higher Re, these vortices develop waves 
travelling in the streamwise direction. At still higher Re, turbulence occurs. It is not 
known what flows occur between wavy vortices and turbulence. In  this paper, direct 
numerical simulation is used to examine several flows that occur in this previously 
unexplored regime. 
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FIGURE 1 .  Schematic drawing of one pair of rotating channel vortices. 

The rotating channel geometry is shown in figure 1.  The streamwise, normal and 
spanwise directions are (z, y, z )  respectively. The flow is driven by a streamwise 
pressure gradient. The Reynolds number used here is Re = O d / v ,  where 0 is the bulk 
streamwise velocity and d is the channel full width. The rotation speed Q about the 
spanwise axis is non-dimensionalized to give the rotation number Ro = SZd/O. In this 
paper, all lengths are non-dimensionalized by d and all velocities by 0, unless 
otherwise stated. 

The rotating channel is a simplification of the geometries occurring in cooling 
passages within turbine blades, or the flow inside impellers of centrifugal pumps. 
Studying the rotating channel may thus lead to a better understanding of these 
flows. I n  addition, understanding the behaviour of vortices in the rotating channel 
may help unravel some of the mysteries of the streamwise-oriented vortices that 
occur in many flows of engineering interest. 

At low enough Re, the flow in an infinite-span rotating channel is plane Poiseuille 
flow, with a modification of the normal pressure gradient to compensate for the 
Coriolis force when Ro + 0. The wall at y = -; is under a higher pressure than that 
at y = t, which leads to the terms high- and low-pressure wall. For rotation rates 
between 0 < Ro < 3, this flow is inviscidly unstable for y < 0 and thus the low- 
pressure wall is also called the unstable wall, and the high-pressure wall the stable 
wall. Viscous stability analysis shows that the entire flow is modified a t  high enough 
Re by two-dimensional streamwise-oriented vortices which span the entire gap. The 
term two-dimensional indicates that the flow is dependent only on two spatial 
coordinates ( y, z ) ,  though there are three non-zero velocity components. The non- 
dimensional spanwise wavenumber of the vortices is 01 = Bnd/h, where h is the 
spanwise vortex spacing. For given a and Ro, linear stability analysis gives the 
neutrally stable Reynolds number, Re,,, above which two-dimensional vortices have 
positive linear growth rates. For given Ro, the minimum of the neutral stability 
curve Rens (01) occurs a t  the critical Reynolds number Re, and the critical wavenumber 
01,. For Ro = 0.5 used here, Re, = 88.60 and a, = 4.91. For Re > Re, two-dimensional 
vortices can occur. This transition is supercritical. Previous authors have dealt with 
the transition from one-dimensional flow to  two-dimensional vortices (Finlay 1989 ; 
Alfredsson & Persson 1989; and see Tritton & Davies 1985 for less recent work). 

At higher Re, two-dimensional vortices become unstable to  waves that travel in 
the streamwise direction a t  constant speed. This transition appears to  be a 
supercritical Hopf bifurcation and the resulting wavy vortices have been noted 
experimentally (Alfredsson & Persson 1989 ; Kuz’minskii, Smirnov & Yurkin 1983 ; 
Smirnov & Yurkin 1983) and examined numerically (Finlay 1990; Yang & Kim 

In the experiments of Alfredsson & Persson (1989), the vortices appear turbulent 
a t  Re well below that required for turbulence in the non-rotating plane channel. The 
flows leading up to this low-Re turbulence and the processes responsible for sustaining 

1991). 
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it  are unknown. In  this study, the flow regimes from wavy vortices to  low-Re 
turbulence are examined. In  52 the numerical method is briefly described and the 
limitations of the spatially periodic boundary conditions being used are also briefly 
mentioned. In  $3  a flow is discussed in which the vortices travel slowly in the 
spanwise direction. Quasi-periodic flows with two and three frequencies are discussed 
in $4. A weakly chaotic flow is found in $5, and the physical mechanism causing this 
chaos is discussed in $6. Low-Re turbulence is discussed in $7 .  Concluding remarks 
are given in 58. 

2. Numerical method 
Using the numerical method of Moser, Moin & Leonard (1983), three-dimensional 

time-dependent solutions of the incompressible Navier-Stokes equations for a 
rotating channel are obtained. Periodic boundary conditions are used in the spanwise 
and streamwise directions. A Galerkin pseudo-spectral method based on expansion 
functions that satisfy the continuity equation and the boundary conditions is used. 
Time-advancement is implicit (Crank-Nicholson) for viscous terms and explicit 
(second-order Adams-Bashforth) for nonlinear and Coriolis terms. The solution 
progresses in time with constant mass flux imposed. The number of modes in (z,y, 
z )  is 3 2 x 2 0 ~ 2 0 .  Spatial energy spectra are monitored to ensure that energy 
decreases exponentially with increasing Fourier wavenumber and thus that adequate 
resolution is being used. To eliminate aliasing errors, the nonlinear terms are 
evaluated in real space on a grid with as many grid points in each direction as the 
number of modes used in transform space (cf. Canuto et al. 1988). The code is a 
modification of the one used to study wavy vortices in the rotating channel by Finlay 

Two different sets of initial conditions are used: one consists of low-amplitude 
(0.001 % 0) random noise superposed on a lowest-order approximation to two- 
dimensional vortices ; the other consists of the equilibrium solution from a lower Re. 
Both sets of initial conditions give the same equilibrium solution. 

Owing to long transients in several of the simulations, only a limited parameter 
range is explored. A rotation number Ro = 0.5 was chosen since this is the value with 
the lowest Re for the onset of two-dimensional vortices from rotating plane Poiseuille 
flow. In  comparison with other Ro, it was hoped that subsequent transitions would 
also occur a t  comparatively low Re, Spanwise wavenumbers in the range a = 5.9 to  
6 were used since this is near the experimental values observed by Alfredsson & 
Persson (1989) and is also near the Eckhaus valley (Guo & Finlay 1991), so that 
vortices with this wavenumber are likely to exist for long times without having their 
wavenumbers affected by splitting or merging of vortex pairs. The streamwise extent 
of the computational region is y = 2z/p and was between 3.7 and 4 times the 
spanwise extent, since this corresponds approximately to the most unstable 
wavelength for wavy vortices with the given Ro and a. The streamwise wavelengths 
of the waves shown in flow visualizations by Alfredsson & Persson (1989), and 
Matsson & Alfredsson (1990) at lower Ro are comparable to those of the most 
unstable mode. 

The use of periodic streamwise boundary conditions implies that the flow is fully 
developed, i.e. the flow is at a streamwise position beyond its development length. I n  
the aspects just mentioned, periodic boundary conditions cannot produce an exact 
replica of an experimental configuration ; however, such boundary conditions have 
successfully simulated many of the essential features of complex flows in a large 

(1990). 
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number of different geometries with only a small segment of the flow pattern 
simulated (see for example, Kleiser & Zang 1991 ; Jimknez & Moin 1991 ; Biringen & 
Peltier 1990; Tryggvason & Unverdi 1990; Jimknez 1990; Malik & Hussaini 1990; 
Herbert 1988; Hall 1988). Many useful results can be obtained in this manner, and 
the present geometry is no exception. 

3. Slow spanwise travelling of wavy vortices 
For Ro = 0 . 5 , ~  = 6, and p = 1.5 the transition from rotating plane Poiseuille flow 

to two-dimensional vortices occurs at Rens = 1.030ReC. The transition from two- 
dimensional vortices to wavy vortices occurs a t  Rehs = 3.0ReC. Wavy vortices are 
temporally periodic and are due to travelling waves in which the flow pattern travels 
with uniform streamwise velocity c,. Specifically, the velocity u satisfies 

(1) 

Experimentally, merging and splitting events, as well as the convective nature of the 
channel and the continually varying inlet conditions prevent wavy vortices from 
being exactly periodic in time or space. Numerically simulated wavy vortices with 
periodic boundary conditions also have shift-and-reflect symmetry (Finlay 1990) : 

u( (x + c1 At) mod 27c/p, y, z ,  t + At) = v ( x ,  y, z ,  t ). 

where z = 0 is the average location of an upflow or downflow plane and v = (vo,,vy, 
vz). Experimental channels have finite length, which removes this symmctry. Thus 
any bifurcations associated with the streamwise direction will be imperfect, just as 
the finite span causes the transition from Poiseuille flow to  two-dimensional vortices 
to be imperfect (Finlay & Nandakumar 1990). 

Figure 2 shows a time record and power spectrum of the velocity sampled at one 
point in the flow from a simulation at Re = 3 . 2 R ~ , .  (Throughout this paper the power 
spectra shown at various Re are qualitatively independent of the sampling position 
in the flow.) This run was started from the random initial conditions discussed in $2.  
To obtain figure 2 the velocity was sampled every 20 time steps in the simulation 
(one time step is 0.015d/B), which gives a slightly jagged appearance to the data in 
figure 2(a ) .  After an initial transient, the flow reaches a wavy vortex state (WVF1) 
like that described by Finlay (1990). The flow is temporally periodic with 
fundamental frequency o1 = 1.3220.01 (or period 7; = 2 n / w , ) ;  five harmonics of the 
fundamental are labelled in figure 2 ( b ) .  Equation (1) implies that  the wave travels at 
streamwise speed c1 = w / P .  Time records taken in a frame moving at this speed are 
steady, verifying the travelling wave nature of the flow. 

When the Reynolds number is increased to Re = M e , ,  time series show the 
appearance of a second low frequency. The oscillation due to the wavy vortices is now 
modulated at very low frequency we. Figure 3(a) shows a time record of ii, sampled 
every ten time steps at one point in the flow once the flow has essentially reached its 
equilibrium state. This run was started from the equilibrium solution at Re = 3 . 2 R ~ , .  
For clarity, only the low-frequency portion of the power spectrum associated with 
this time record is shown in figure 3(6) .  (The highcr-frequency portion is similar to 
that in figure 2 ( b )  except for the appearance of sidelobes on each harmonic due to 02.) 
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FIQURE 2. (a) Time series and (b) power spectral density of w, for temporally periodic wavy vortices 
at Re = 3.6Re, sampled at one point in the flow. The power spectral density (also called the power 
spectrum, autospectral density, or autospectrum) of v,(t) is taken from the data in (a) for t > 300 
where the initial transient non-periodic behaviour has decayed to an insignificant level. 

The rapid oscillations in figure 3 ( a )  are due to  the wavy vortex frequency 
w ,  = 1.32&0.01. The low-frequency, amplitude modulation of the signal in figure 
3(a )  is at a frequency w, = 0.0113+0.0002. The period associated with w2 is 
T, = 2 x 1 ~ ~ .  Because there are now two frequencies in the flow, power spectra have 
peaks a t  integer combinations of the two fundamental frequencies. (The very low- 
amplitude peak near o = 0.63 in figure 3(b)  is a transient frequency which is not 
present in spectra obtained a t  later times.) In  figure 3 ( b ) ,  the frequencies wl-mw, for 
m = 0,1 ,2  and no, for n = 1,2  contain all of the significant energy. 

By measuring the time between successive minima or maxima due to  the wavy 
vortices in figure 3 (a) one obtains the time required for one wavelength of the wavy 
vortex to pass by in the streamwise direction. The time between waves was measured 
over a duration 6T, near two times separated by approximately gT,. The difference 
between the longest and shortest times between successive waves over these times 
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FIGURE 3. (a )  Time series and ( b )  power spectral density of v, for spanwise travelling wavy vortices 
at Re = 4Re, sampled at one point in the flow. The da ta  in (6) show only the low-frequency portion 
of the full power spectrum associated with (a ) .  

was 0.028T1 *O.O05T,, indicating that we causes frequency modulation. Thus, the 
signal in figure 3 ( a )  is modulated both in frequency and amplitude by w2. 

When two frequencies occur in a dynamical system it is common for the ratio of 
the two frequencies to become locked at a rational number over a certain range of the 
dynamical parameter (Berge, Pomeau & Vidal 1984). This phenomenon is called 
frequency locking, phase locking, or entrainment. The system is periodic in time 
when frequency locking occurs. At Re = 4 Rpc, close examination of time series shows 
that the flow is periodic in time with period w2 and that w1 = 117w2. For example, the 
low-amplitude portion of the signal near the left side of figure 3 ( a )  is separated by 
T2 from an identical low-amplitude portion near the right side. This is best seen if 
only part of figure 3 ( a )  is drawn and then superimposed on the signal at a time 
later. There is no visible difference between the two signals when superimposed in 
this manner, indicating the flow is periodic with period c. The wavy vortex 
frequency w1 is frequency locked with the frequency w2 in the ratio 117/1. 
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In other dynamical systems. frequency locking occurs after the dynamical system 
has passed through a quasi-periodic regime where the two frequencies are not locked 
(Gollub & Benson 1980; Berg6 rt  al. 1984). Thus, it may be that w2 is an 
incommensurate frequency a t  somc Re not considered here. In most dynamical 
systems, the two frequencies remain locked at  certain rational numbers over a range 
of the dynamical parameter. Thus at  He slightly higher or lower than 4 Re, one might 
expect wJw2 still to be locked in the ratio 11711. Simulations a t  other Re near 4Re, 
show frequency locking; however, the ratio of q / w 2  varies rapidly with Re. Several 
runs with Re within 3% of 4Re, all yielded frequency locked flows, but w l / 0 2  
increased by 15% as Re increascd through this range. Frequency locking has been 
observed in other fluid systems (e.g. Olinger & Srecnivasan 1988), and occurs in other 
dynamical systems, for example the circle map (Arnold 1965). In  the system 
described by the circle map, the two frequencies become locked together over a range 
whenever their ratio is near a rational number. Similar behaviour has been observed 
experimentally in the wake of an oscillating cylinder by Olinger & Sreenivasan 
(1988), although the locking ratio is not so large as observed here. Similar behaviour 
may occur for the frequency locking observed here, i.e. the flow may remain locked 
a t  a fixed ratio over a small but finite range of Re near each of the Re considered here. 
This frequency locking is not an artifact of initial conditions, or the parameter set, 
since w2 is found to be frequency locked when either set of initial conditions 
mentioned in $ 2  is used, and when each of Re, a, and p is varied by several percent. 

Rand (1982) has shown that it is impossible for a wavy vortex frequency to become 
locked with the modulation frequency associated with modulated wavy vortex flow 
in Taylor-Couette flow. A similar result may be shown for curved channel flow. 
Physical and numerical experiments in these two geometries have found no 
indication of frequency locking with the wavy vortex frequency (Fenstermacher, 
Swinney & Gollub 1979; Bland & Finlay 1991). Symmetries associated with the 
curved geometry are responsible for the absence of frequency locking. These 
symmetries are not present in the rotating channel and thus the wavy vortices can 
frequency lock with a modulation frequency. Such frequency locking is also observed 
in Rayleigh-Bdnard convection (Gollub & Benson 1980). 

The physical nature of the modulation due to o, can be determined by observing 
the flow a t  different times over the period of one modulation. Observations were 
made over one period at time intervals separated by &q. The vortices are found 
to travel in the positive spanwise direction a t  constant speed c2 = w 2 / a .  (Since the 
physics are unchanged by the reflection z -+ - x ,  spanwise travelling in the negative 
z-direction can also occur.) The original travelling waves continue to move in the 
streamwise direction a t  speed c1 = wl/p.  Thus the flow a t  one time, t ,  is identical to 
that a t  a later time, t + At, except that  the flow pattern is shifted in the spanwise and 
streamwise directions. The flow is steady in a reference frame that moves with a 
velocity having streamwise component c1 and spanwise component c2. Specifically, 

(3) 

Becausc o2 and w1 are frequency locked at the ratio n, the travelling waves due to  
w1 move downstream a distance n2n//3 during the time which the vortices move in 
the spanwise direction a distance 2nla. The spanwise velocities c2 observed here are 
roughly 1/400 times the streamwise velocities cl. Since c1 is of the same order as the 
bulk streamwise velocity (Finlay 1990 ; Alfredsson & Persson 1989), spanwise 
travelling wavy vortices would only travel one channel width in the spanwise 
direction in a streamwise distance of the order of 400 channel widths. 

u( (z + clAt ) mod 27c/p, y, ( z  + c p  At ) mod 2n/u, t + At ) = v (x ,  y, z, t ).  
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FIGURE 4. Instantaneous contours of streamwise velocity v, in an (x,z)-plane at the channel 
centreline (y = 0) show the shift-and-reflect symmetry of (a) wavy vortices at Re = 3.6Re,, and (b) 
the asymmetry of spanwise travelling vortices at Re = 4Re,. The contours in (a) are from 1.27 to 
1.39 in increments of 0.012, while those in (b)  are from 1.25 to 1.39 in increments of 0.02. 

X 

When the vortices are observed in cross-section (in a y,z-plane) a t  successive 
instants in time, the qualitative appearance of this flow differs little from the wavy 
vortex flows occurring at  lower Re a t  this Ro, a, /3 and described by Finlay (1990). 
However, the flow is no longer shift-and-reflect symmetric. The appearance of w, is 
thus symmetry breaking. This is most easily seen when contours of the velocity are 
plotted in an (2, z)-plane. Figure 4 (a )  shows contours of the streamwise velocity v, a t  
y = 0 and one instant in time for a wavy vortex flow at  Re = 3.2Re,. One spanwise 
period h and one streamwise period ,u = 2n/P are shown. The shift-and-reflect nature 
of the flow is apparent ; if the entire plot is shifted in the x-direction half a wavelength 
and then reflected about the average z-location of the upflow region (the plot is 
drawn so that this is z = 0) one obtains the same plot shown. Figure 4 ( b )  shows v, 
at y = 0 for Re = 4.063Rec. This flow is not shift-and-reflect symmetric. 

Spanwise travelling of vortices has been observed in the swept-wing geometry (cf. 
Reed 1988). Whether spanwise travelling in the rotating channel is confirmed 
experimentally remains to be seen, since very low drift speeds, continually varying 
inlet conditions in experiments coupled with the convective nature of channel flow, 
and fixed endwalls could make this flow pattern experimentally elusive. 

4. Two- and three-frequency modulated wavy vortices 
As the Reynolds number is increased further, time records and power spectra show 

that spanwise travelling of the vortices is not present in the equilibrium flow. 
Instead, near Re = 4.1Rec, w, is replaced by a new, much higher frequency in the 
flow. At slightly higher Re (Re = 4.2Rec), another incommensurate frequency 
appears, resulting in a three-frequency quasi-periodic flow. Figure 5 shows a power 
spectrum from a simulation a t  Re = 4.3Re, using Re = 3.2Re, as initial condition. 
The maximum frequency shown in figure 5 is only one quarter of the sampling 



Trunsition to turbulence t n  a rotuting channel 

10' 

100 

10-1 

10-2 

10-3 

I 0-4 

10 

10-6 

10-7 

10-8 

81 

0 1 2 3 4 5 6 7 8 9 10 

Frequency 

FIGURE 5. Power spectral density of v2 for three-frequency modulated wavy vortices at Re = 4.3ReC 
sampled at one point in the flow. The flow had reached its equilibrium state prior to sampling. 

frequency, f,. The frequency associated with the wavy vortices is apparent as 
w1 = 1.35kO.01. The two other fundamental frequencies in the flow are 
w; = 0.304+0.006 and w3 = 0.278+0.006. The first harmonics of w; and w3 are seen 
as the most cnergetic frequencies in figure 5. Both w; and w3 vary by less than 5% 
when Re is varied by f 2 %  about Re = 4.2ReC. With the plot resolution used in 
figure 5, w; and wg do not appear distinct, but they are clearly distinct in the data 
and in higher-resolution plots. Although it is not visually apparent, all spikes in 
figure 5 are integer multiples of the three frequencies wl, w i  and w3. It is easier to 
discern the three-frequency character of the flow from power spectra of the pressure 
gradient parameter Ap, defined as 

where applax is the streamwise pressure gradient, ap/ax is the value of ap/ax averaged 
over the computational box, and aP/ax is the streamwise pressure gradient for 
Poiseuille flow. (The quantity Ap plays a role similar to that of the Nusselt number 
in Rayleigh-BBnard convection, or the non-dimensional torque in Taylor-Couette 
flow.) Owing to its travelling wave nature, o1 is absent from time records of Ap (or any 
other axisymmctric quantity) making it considerably easier to verify that there are 
two incommensurate frequencies besides w l .  Figure 6 shows a spectrum for Ap (for 
clarity only the low-frequency portion of the spectrum is shown) corresponding to 
the same simulation as figure 5. Since Ap is a measure of the strength of the vortices 
(Finlay, Keller & Ferziger 1988), the modulation of Ap by w; and w3 causes 
modulation of the strength of the vortices. All peaks in the full power spectrum are 
at frequencies, w ,  that are linear combinations of the fundamental frequencies wi and 
w3,  i.e. w = no;  + mu3 where n and m are integers. Most of the peaks are separated by 
w3-w; .  One could alternatively choose some combination of w; and w3 as one of the 
two fundamental frequencies. 
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FIGURE 6. Power spectral density of Ap at Re = 4.3Re,. The flow had reached its equilibrium 
state prior to  sampling. 

The time records associated with figures 5 and 6 and similar results obtained at 
lower Ke when w3 is absent show that both w i  and w3 produce amplitude modulation 
of the travelling wave signal. In  addition, observations of the time taken for 
successive travelling waves to pass by show that both w: and w3 cause variations in 
the temporal period, and thus the frequency, of the travelling wave. The maximum 
variation of the wavy vortex period observed during a time 10Tk (where Ti = 2x1~;)  
is approximately 0.08T1 &- 0.03T,. (Owing to the periodic streamwise boundary 
conditions of fixed streamwise length, such variations in the frequency of the 
travelling wave correspond to variations in the speed c1 of the wave.) Thus, w i  and 
w3 both cause frequency and amplitude modulation. 

For a small range of Re near 4.1ReC below the onset of w3,  only w1 and w i  are 
present, and the flow is periodic when observed in a frame of reference moving 
with the streamwise speed c1 equal to the speed of the travelling wave associated with 
wl. In such a moving frame the character of the modulation frequency w;l can be 
represented using a mathematical framework developed by Coughlin (1990) for 
modulated wavy Taylor vortices (see also Coughlin & Marcus 1992a, b) .  Coughlin 
(1990) performed numerical simulations of modulated wavy Taylor vortices (for a 
radius ratio of 0.875) using periodic boundary conditions like those used here and 
described the modulation frequency in terms of the following framework. For a given 
y and z, an arbitrary flow quantity Q depends on x and t as follows for modulated 
wavy vortex flow with one modulation frequency : 

where c1 and /3 are the frequency and streamwise wavenumber of the travelling wave. 
The modulation is characterized by a streamwise wavenumber y and the parameter 
c2, which is defined as c2 = c1 +ugly.  Since the flow is temporally periodic when 
viewed in the travelling wave reference frame, the time-average of Q is easily 
obtained in the moving frame as 
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where i = x-c., t .  The velocity field associated with the modulation, defined as urn, 
is then obtained by subtracting the time-average field in the travelling wave frame 
from the instantaneous field in the inertial frame, i.e. 

u, = u - i f .  (7 )  

The velocity field urn then shows a SxlP-periodic function modulated by a function 
with wavelength 2 x / y ,  from which y can be obtained. For all modulated wavy vortex 
flows observed here, it is found that y = p. 

Coughlin (1990) shows that the behaviour of urn as a function of time demonstrates 
the meaning of c2, since in the travelling wave frame the modulation is approximated 
by another travelling wave with an average drift speed cd = c2-c1. Thus the 
structure of the modulation is seen to drift relative to  the c,-frame a t  speed cd. (The 
modulation cannot be characterized solely as a second travelling wave, since there is 
distortion of the modulation structure as it travels downstream.) For the two- 
frequency modulated wavy vortex flows observed here cd = w i / p  % %.,. 

Coughlin (1990) finds two types of modulated wavy Taylor vortices that are of 
interest here : ZS modulated waves and GS modulated waves. Both can be described 
by the above framework, but GS modes cause large-amplitude modulations of the S- 
shaped boundary between vortices and have cd x ic.,, whereas ZS modes cause little 
change in the shape of the boundary between vortices and have c d x 2 c . , .  The 
modulation due to w; observed here is closer in character to  the GS modes in that w; 
causes large variations in the boundary between vortices and cd x &. However, one 
of the features of GS modes is that the quasi-periodic field urn is concentrated on the 
sides of the outflow (upflow) region, whereas ZS modes are concentrated in the 
outflow (upflow) region. I n  this feature, w; is like the ZS modes, since plots of the 
energy of urn show that most of the energy of urn is concentrated in the upflow region, 
not on the sides of the upflow region. Thus, the modulation due to w;  corresponds to 
neither the ZS or GS modes observed by Coughlin (1990), but i t  can be described by 
equation ( 5 )  which was developed by Coughlin (1990). 

One aspect of modulated wavy vortices in the rotating channel which cannot occur 
in Taylor-Couette flow is frequency locking of the modulation frequency with the 
wavy vortex frequency, as mentioned in $3. Here i t  is found that the wavy vortex 
frequency, w l ,  and the modulation frequency w; lock into the ratio 411 when a = 5.9, 
p = 0.8, Re = 4 Re,. Such locking can occur because the symmetries associated with 
the curve Taylor-Couette geometry are not present in the rotating channel. 

For Re > 4.2He,, the flow in the c,-frame becomes quasi-periodic, instead of 
periodic, owing to the appearance of w g  and it is more difficult to discern the 
behaviour of w; and w, independently. The physical character of w; and w, is seen by 
observing the flow a t  various times. The only striking qualitative change that w; and 
wg appear to produce in the travelling wave is a modulation of the S-shape of the 
upflow region when viewed in an (x,z)-plane. Figure 7 shows contour plots of v, a t  
y = 0 a t  times separated by 0.225T;. The upflow region is located in the S-shaped 
low-v, valley near z = 0. The S-shape is flattened by roughly 50% at the later time 
( b )  in comparison to the earlier time (a ) .  The S-shape of the travelling waves is 
maximally flattened approximately when the waves have maximum streamwise 
velocity, and i t  is maximally enhanced approximately when the waves have their 
slowest velocity. (This is opposite to the behaviour of modulated wavy Taylor vortex 
flow, cf. Gorman & Swinney 1982.) The waves also usually travel slowest at times 
near where there is a local minimum in the time record of Ap,  and fastest a t  times 
near when there is a local maximum in Ap.  Figure 7 ( a )  is a t  a time when there is a 
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FIGURE 7. Contours of streamwise velocity 71% in an (z, 2)-plane at y = 0 are shown 
for Re = 4.3Re, at (a) t = 1071.4. ( b )  t = 1078.1. 
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local minimum in Ap,  while figure 7 ( b )  is at the time of the following local maximum 
in Ap. Observations of the flow in cross-section show no other significant qualitative 
differences from the wavy vortex flow WVFl shown by Finlay (1990) a t  Re = 3.2ReC. 

As can be seen in figure 7 ,  the flow has regained its shift-and-reflect symmetry. 
This symmetry was broken by the spanwise travelling mode at  lower Re, but there 
is now no spanwise travelling of the vortices. Initial conditions which were not shift- 
and-reflect symmetric produced long transients during which a spanwise travelling 
mode slowly decayed. Conversely, the use of initial conditions that are shift-and- 
reflect symmetric for simulations near Re = Uie,, where the asymmetric spanwise 
travelling mode is an equilibrium solution, require long transients prior to the onset 
of the equilibrium flow. 

5. Weakchaos 
Increasing Re to 4.5ReC yields a flow that is weakly chaotic. Figure 8 shows the 

low-frequency part of a power spectrum of vz. This run was started from the random 
initial conditions discussed in Q 2. Three fundamental frequencies are still present in 
spectra, but there are many energetic peaks occurring a t  frequencies other than low- 
order combinations of these three frequencies. A t  Re = 4.3ReC all peaks in the non- 
chaotic spectrum occur a t  low-order integer combinations of the three fundamental 
frequencies. (This difference between figures 5 and 8 is not obvious simply from 
visual inspection.) The three fundamentals in figure 8 are w1 = 1.33f0.01, 
w; = 0.31 f 0.01 and w3 = 0.28f0.01. One could attempt to  explain the spectra using 
four or more fundamental frequencies, but there are no energetic frequencies in figure 
8 to choose as fundamentals that would produce the peaks shown using only low- 
order integer combinations. 

Since the travelling wave frequency w1 is absent from time series of the pressure 
gradient parameter, Ap, it is easier to identify the modulation frequencies in the Ap 
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FIQURE 8. Power spectral density of v, for chaotic modulated wavy vortices at Re = 4.5ReC 
sampled at one point in the flow. 
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FIGURE 9. Power spectral density of Ap at Re = 4.5ReC. 

data shown in figure 9. Figure 9 shows there is significant energy at many frequencies 
other than combinations of wi and w3,  indicating the flow is chaotic in time. 

Despite the occurrence of temporal chaos at Re = 4.5Ree, the spatial structure of 
the flow at any instant remains non-turbulent. In fact, the flow is still shift-and- 
reflect symmetric. (The small amount of asymmetry seen for this flow in figure 12 is 
due to the decaying asymmetric initial conditions and is not present at later times 
or when symmetric initial conditions are used.) At any instant, the flow is 
qualitatively unchanged from that prior to  the onset of temporal chaos and is similar 
to the wavy vortices described by Finlay (1990). The S-shape of the upflow boundary 
between vortices is modulated in time by the two modulation frequencies. Because 
of the weak temporal chaos the S-shape is also enhanced and flattened in a weakly 
chaotic manner. 

In  a reference frame travelling a t  the speed c1 = wlp only two frequencies are 
present for all R e  examined just below the onset of chaos. Thus the transition to 
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chaos here appears to occur directly from a T2 - torus ; however, this cannot be 
stated unconditionally since there may exist Re (4.4Rec < Re < 4.5Rec) for which 
another frequency appears in the flow to yield a T3-torus between the finite number 
of Re values explored. 

6. Chaos driven by shear instability 
In  this section small perturbations to the temporally chaotic flow at Re = 4.5Rec 

are shown to grow only in regions near where the streamwise velocity component has 
largest spanwise shear, indicating that the chaos is driven by shear instability of 
these regions. 

In  dynamical systems the largest Lyapunov exponent, A, gives the average 
exponential rate at which two nearby trajectories diverge from each other in phase 
space. If the Lyapunov exponent is positive then a small perturbation to the flow at 
one point in phase space will diverge exponentially away from the unperturbed 
trajectory until the two trajectories are no longer ncarby. This results in chaos, since 
any two initial conditions that are close together will diverge exponentially, 
producing entirely different flows a t  sufficiently later times. The transition to chaos 
as a dynamical parameter (e.g. the Reynolds number) is varied is thus marked by the 
largest Lyapunov exponent passing through zero. Unfortunately, existing methods 
for calculating h from solutions of the governing equations require extremely long 
time histories of the flow when h is near zero. This is because the instantaneous rates 
of divergence of nearby trajectories usually oscillate significantly about zero, and a 
very long time average is needed to accurately determine the average rate of 
divergence given by the largest Lyapunov exponent. However, instantaneous rates 
of divergence (which will be denoted by h( t ) )  of neighbouring trajectories can provide 
useful information about the flow when used in conjunction with the instantaneous 
spatial structure of the growing perturbation to the flow. For example, calculations 
of the largest Lyapunov exponent in Taylor-Couette flow (Vastano, Moser & Keefe 
1989) showed that when h(t) has a large local maximum, small-amplitude 
perturbations to the flow only have significant amplitude in the inflow and outflow 
regions between vortices. In addition these large positive excursions of h(t) only 
occurred when the inflow and outflow regions were closest together in the spanwise 
direction, leading Vastano et al. (1989) t o  suggest that  a shear instability is 
responsible for the onset of weak chaos in the Taylor-Couette system. 

To examine the physical nature of the tcmporal chaos observed here in the 
rotating channel, I have calculated h(t) ,  i.e. instantaneous values of the largest 
Lyapunov exponent. The method of calculation is dealt with rigorously by Benettin, 
Galgani & Strelcyn (1976). The flow is perturbed from its fully developed state by a 
small-amplitude random perturbation. Both the unperturbed and perturbed flows 
are then advanced in time as described in $2. At Re = 4.5Re, the flow is chaotic so 
the perturbation grows in time on average ; thus, every ten time steps (at this Re one 
time step is At = 0.015d/u)  the energy of the perturbation is checked and 
renormalized to its initial energy level so that it remains a linear perturbation. After 
a short initial transient period (less than 500 time steps) the initially random 
perturbation begins to follow a trajectory near the unperturbed flow in solution 
phase space. The value of h(t) is calculated by taking the log of the ratio of the norm 
of the perturbation at successive time steps (the norm used here is the L2 norm in 
Fourier space, i.e. the square root of the sum of the squares of all the Fourier 
coefficients). 
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FIGURE 10. A sample of the instantaneous value of the largest Lyapunov exponent h(t)  is shown 

for Re = 4.5ReC. 

Several tests of the method for calculating h(t)  were performed. For Re in the wavy 
vortex regime h should be zero since the flow is temporally periodic (cf. Berge et al. 
1984). At Re = 3.2Rec (which is a wavy vortex flow), h( t )  is indeed zero to within 
truncation and roundoff error. The value of A ( t )  should also be independent of the 
amplitude of perturbation, since it is a linear growth rate. Random initial 
perturbations using the same random seed at  Re = 4.5ReC and having less than lo-' 
times the energy of the unperturbed flow but varying in energy by a factor of 10000 
all yielded the same values of h(t)  to within two significant digits. These tests verify 
thc method of calculation of h(t) .  

Figure 10 shows a portion of h(t)  for Re = 4.5Rec. Since A ( t )  is obtained from a 
quantity that is averaged over the entire flow (the energy), o1 is absent from it,  just 
as for Ap. Much of the energy in h(t)  is associated with w; and 03, but h(t) is itsclf 
temporally chaotic. Different random seeds for the initially random perturbation 
yielded qualitatively similar h(t) with large maxima and minima occurring at the 
same times as in figure 10 (to within 1 YO of the length of the time shown in figure 10). 
The time covered by figure 10 is approximately 4T3, 4.5T; or 19q;  it therefore covers 
a time over which significant changes occur in the unperturbed flow. 

There are several local maxima having large positive h(t) in figure 10. These are 
times when the perturbation is diverging most rapidly from the unperturbed flow. 
Observations of the perturbation a t  these times show that the perturbation has 
significant energy only in localized regions. Figure 11 (a )  shows the kinetic energy of 
the perturbation in a (y, 2)-plane at one streamwise location for t = 1250.1. (Figure 
10 shows a large maximum of h ( t )  a t  this time.) Figure 11 ( b )  shows the streamwise 
velocity and figure 1 1  ( c )  shows the cross-flow velocities of the unperturbed flow a t  
the same time and location. The perturbation has significant energy only in two 
regions close to  the y = -: wall where the streamwise velocity has largest shear in 
the spanwise direction (i.e. largest av,/az). These regions are on both sides of the 
upflow region of the vortices where the vortices bring low-streamwise-velocity fluid 
away from the wall, creating large spanwise shear on either side of this upflow region. 
Figure 12(a) shows the kinetic energy of the perturbation in an (x,z)-plane a t  
y = - a  for the same time as in figure 11. Figure 12(b )  shows the streamwise 
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FIGURE 1 1 .  For Re = 4.5Rec and t = 1250.1 (the largest Lyapunov exponent has a large positive 
value a t  this time) in a (y, z)-plane at r = 0 are shown (a )  contours of the kinetic energy of a small- 
amplitude perturbation to  the flow, running from 4 x lW7 to 32 x ( b )  
contours of v, from 0.2 to 1.4 in increments of 0.2; (c) vector plots of the cross-flow velocities vy and 
v,. In  (c), velocities are shown only a t  every second grid point in each direction. 

in increments of 4 x 

component of velocity for the same time and location. The perturbation is again seen 
to have significant energy only in the narrow regions on each side of the upflow region 
where the streamwise velocity has its largest values of spanwise shear. Observations 
of the perturbation at  other times when h(t) has a large positive maximum yield the 
same conclusion : rapid growth of perturbations occur only in localized regions on 
each side of the upflow region and near the unstable wall where the streamwise 
velocity has maximum spanwise shear. 

The precise correlation between the spatial location of the maximal spanwise shear 
of the streamwise velocity and the location of the maximal growth of perturbations 
suggests that the chaos observed a t  Re = 4.5Re, is driven by instability of these shear 
regions. (A similar shear instability was proposed by Finlay et al. 1988 as a 
mechanism for the transition from steady to wavy twisting vortices in the curved 
channel.) Additional support for shear instability as the physical mechanism behind 
the chaos observed here is lent by the observation that thc magnitude and extent of 
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FIGIJRE 12. For Re = 4.5ReC in an (z, z)-plane a t  y = - a  and a t  the same time as figure 1 1  are shown 
(a )  contours of the kinetic energy of a small-amplitude perturbation to the flow, running from 
3 x lo-' to 30 x lo-' in increments of 3 x lo-'; ( b )  contours of vz from 0.76 to 1.21 in increments of 
0.05. 

these shear regions are largest when h(t)  is maximum and smallest when h(t)  is 
minimum. For example, plots of vz in an (x, 2)-plane at y = - a  between t = 1245 and 
1260 in figure 10 show that the magnitude of the shear is largest when h(t)  has a 
maximum and is on average approximately 15% larger compared to  the minimum 
values it has when h(t) has a minimum. In addition, these shear regions have 
maximum spanwise extent when A ( t )  is maximum, extending approximately 20 YO 
more in the spanwise directions when A( t )  is maximum than when i t  is minimum. 

The concentration of the perturbation energy in regions where there is maximal 
spanwise shear of the streamwise velocity, and the correlation between max- 
imum/minimum magnitude and extent of these shear regions with the times when 
perturbations diverge most/least rapidly from the unperturbed flow indicate that 
the chaos observed here is driven by these shear regions. As Re increases, the vortices 
grow in strength, causing the magnitude of the shear in these regions to  increase. 
Below the onset of chaos, these shear regions are not strong enough on average to 
cause perturbations to decay on average more than they grow, i.e. to cause the 
largest Lyapunov exponent to be greater than zero. But above the transition to 
chaos the growth of perturbations in these shear regions exceed their decay and the 
resulting flow exhibits the exponential divergence, on average, of neighbouring 
trajectories associated with chaos. 

7. Turbulent rotating channel flow 
When Re is increased to  6.7ReC, temporal spectra show a broadband spectrum, as 

shown in figure 13. This run was started from the random initial conditions discussed 
in $2. The flow is no longer just wavy vortices modulated by a few frequencies or 
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FIGURE 13. Power spectral density of‘ v, for mildly turbulent vortices at Re = 6.7Re, sampled at 
one point in the flow. The flow has reached its equilibrium state prior to  sampling. 

weak chaos. The fundamental frequencies wl. w i ,  wg  may still be present, but they are 
masked by a continuous spectrum of frequencies having equal or greater energy. 

In  some systems, inadequate resolution produces broadband energy in temporal 
spectra that disappears in properly resolved simulations (Curry et al. 1984). Spatial 
energy spectra shown in figure 14 for t = 1000 show the 32 x 20 x 20 resolution used 
here is adequate since thcsc spectra decay exponentially up to the highest 
wavenumbers resolved. Further details of the data in figure 14 are given in the 
Appendix. There is a mild slowing of the decay rate a t  the highest wavenumber in 
l4(a) and 14(c), but no upturn or oscillation in the spectra associated with 
inadequate resolution. 

Instantaneous flow fields a t  Re = 6 .7R~, .  show that the major flow feature is still 
a pair of streamwise-oriented vortices. However, the flow has lost the shift-and- 
reflect symmetry that was present at lower Re (in the absence of spanwise travelling). 
This is evident in figure 15, where z.1, in an (z, 2)-plane a t  y = -0.416 is shown for 
t = 1003.75d/O. The upflow boundary ncar 2 = 0 no longer has the symmetric S- 
shape that it had at lower Re ; its appearance varies chaotically in time. Observations 
of the flow at different times also show that the pair of vortices now moves 
chaotically about in the spanwise direction. with excursions of kt times the vortex 
spacing not uncommon. The location of the primary vortices also varies chaotically 
up and down in the y-direction in time as well as in the streamwise direction. 
Occasionally a t  some streamwise locations one vortex lies almost directly above the 
other in y, with the ‘upflow’ region directed almost entirely spanwise, while at the 
same time and a t  other streamwise locations the primary vortices are in their more 
usual side-by-side state. Chaotic motion was observed by Johnston Halleen & Lezius 
(1972) at much higher Re. but was thought to be due to experimental noise or finite- 
span effects. Neither of these are present in the current simulation; the chaotic 
motion of the vortices is inherent in the dynamical system. Using reflective flakes 
to visualize the upflow and downflow regions of the vortices, Alfredsson & Persson 
(1989) also observe vortices whose upflow and downflow regions move about 
chaotically and appear turbulent a t  the same Re = 590 as here, although they 
provide no observations a t  the higher Ro used here. 
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FIQURE 14. The energy of the flow as a function of (a) streamwise Fourier mode ( b )  Chebyshev mode 
(in the y-direction) and (c) spanwise Fourier mode, for t = 1000 and Re = 6.7Re,. See the Appendix 
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FIGC'RE 15. ('ontours of 22, for Re = 6.7HpC at t = 1003.75 and y = -0.416, running from 0.345 
to 0.925 in incmments of 0.058. 
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FIGURE 16. Vector plots of the cross-flow velocities vY and ziz are shown for Re = 6.7 Re, at the same 
time as figure 15 and for (a )  x = 0.133 and ( h )  x = 0.7. Velocities are shown only at every second 
grid point in each direction. 

7.1. Quasi-coherent structures 

Instantaneous flow fields also show that  in addition to  the primary vortex pair, 
secondary streamwise-oriented vortices of limited streamwise extent sometimes 
appear near the unstable (y = -&) wall. Observations of the flow at other times show 
that  these secondary vortices are transient and occur at irregular intervals in time. 
They also appear sometimes as a single vortex instcad of a pair. Figurc 16 shows 
vector plots of the cross-flow velocity for two (y, z)-planes for the same flow as shown 
in figure 15. Counter-rotating secondary vortex pairs are centred near x = &$A. 
In  the terminology used to  describe the quasi-coherent structures that  occur in 
turbulent boundary layers, these secondary vortices cause sweeps and ejections in 
conjunction with low-speed streaks. The secondary vortices eject low-velocity fluid 
away from the wall and sweep high-velocity fluid toward the wall, causing the high- 
velocity regions on either side of the primary upflow region and the low-velocity 
regions near z = f & h  (low-speed streaks) in figure 15. 

The size, location, and flow patterns of these secondary vortices arc similar t o  
those of the quasi-coherent structures observcd in turbulent boundary layers. 
Instantaneous flow fields associated with ten different secondary vortex structures 
were obtained. The spanwise period of the computational domain is 81v/u,, i.e. 81 
wall units (u: = ~ / p ,  where 7 is the time-avcragc streamwise shear stress on the 
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unstable wall). Since only one structure was ever observed per spanwise period, the 
spanwise spacing of the secondary vortices is 81 wall units, which is the most 
probable spacing of the wall-layer structures observed in turbulent boundary layers 
(Cantwell 1981). The streamwise extent of the secondary vortices is on average 
approximately 176 v/u,  (individual structures vary by up to  f40% from this 
average and the streamwise extent of the computational region is 326 wall units). 
The streamwise length of the vortices is thus in the range 100-2000 for sublayer 
structures observed in turbulent boundary layers (Cantwell 1981). I n  wall units, the 
secondary vortex centres are on average located near approximately y+ = 12 
(according to Cantwell 1981, the centre of the streamwise vortices observed in 
turbulent boundary layers varies from 10 v / u ,  to 25 v /u ,  with 15 v/u,  about average). 
The secondary vortices observed here thus produce instantaneous flow fields that 
have sweeps, ejections, streaks and vortical structures of the same size and location 
as those associated with these coherent structures in the turbulent boundary layer. 
The relation between streamwise-oriented vortical structures in the sublayer and 
streaks, sweeps and ejections has not yet been entirely sorted out in the flat-plate 
turbulent boundary layer (Robinson 1991), but simulations of the flat-plate 
boundary layer (Robinson, Kline & Spalart 1988) show a strong spatial association 
between vortical structures and ejections, sweeps, and low-speed streaks. The 
transient secondary vortices observed here are believed to  be the same type of quasi- 
coherent sublayer vortex structures as observed in the flat-plate boundary layer. 

Of the ten secondary vortex structures observed for a small portion of their life, 
all were counter-rotating pairs of vortices when at  maximum strength, although 
often for part of their life one of the vortices is much weaker than the other or even 
absent. Nine of the ten pairs observed had the same sense of vorticity as the primary 
pair in the sense that the distance between vortex centres was much less across their 
upflow region. 

The life history of four different secondary vortex structures was also determined. 
Two of these structures that were followed in time first appeared close to  the unstable 
wall in the downflow region between the primary vortices. One of these two appeared 
first as a weak single vortex but soon became a vortex pair, while the other first 
appeared as a weak vortex pair. These two structures then moved away from the wall 
as they grew in strength. The secondary vortex centres reached a maximum distance 
from the wall of approximately 12 v /u ,  when the secondary vortices were strongest. 
The structures then decayed as they moved toward the wall. For both of these 
events, one of the vortices decayed much more rapidly than the other, leaving a 
single decaying weak vortex over most of the latter third of the life of the structure. 
The life of these two structures was approximately 200 viscous time units, although 
for most of this time they were very weak. The secondary vortices have secondary 
velocities of the same magnitude as the primary vortices for only about 50 viscous 
time units, which is the same length of time that strong coherent structures 
associated with sublayer vortices are found in simulations of turbulent plane channel 
flow (Guezennec, Piomelli & Kim 1989). The secondary vortices are convected in the 
downstream direction a t  a speed approximately equal to  the mean streamwise 
velocity at the average y-location of their centres, as is also found in the turbulent 
plane channel (Guezennec et al. 1989). 

The other two secondary vortex structures observed over time were both born near 
the unstable wall in the upflow region between the primary vortices. These two 
structures grew much more rapidly than those born in the downflow region, growing 
to maximum strength within approximately 20 viscous time units (compared with 50 

4-2 
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or so viscous time units for the two structures born in the downflow region). Very 
soon after reaching a strength near that of the primary vortices, each of these two 
up flow structures merged rapidly with the primary vortices, producing primary 
vortices with large extent in the y-direction. This merger occurred over about 20 
viscous time units as well, so the entire life of each of these two upflow events was 
approximately 40 viscous time units. Secondary vortices which form in the upflow 
region between the primary pair would not be expected to last long since the primary 
vortices induce strong motion away from the wall there. Only three of the ten 
structures observed instantaneously were near the upflow region. However, at much 
higher Re, Johnston et al. (1972) observed more low-speed streaks in the upflow 
region compared to the downflow region, which is opposite to what might be 
expected from the short life and smaller number of upflow events observed here. This 
difference may be caused by the much lower Re used here so that the sublayer 
structures have size almost equal to  that of the primary vortices and therefore 
interact strongly with the primary vortices. Any upflow events are quickly swept 
away from the wall. At high Re the sublayer is much smaller and the associated 
structures would not interact so strongly with the primary vortices. 

In  experiments (Johnston et al. 1972) and large-eddy simulations (Tafti & Vanka 
1991) it is also found that rotation reduces the number of coherent structures 
observed near the stabilized wall. In  agreement with this, no secondary vortex 
structures occur near the stable wall (y = 4) here. Although the flow near the stable 
wall in the simulation a t  Re = 6.7ReC does not have turbulent structures present, it 
is still temporarily chaotic. However, the secondary velocities here are small. 

The appearance of coherent structures could be associated with the rapid growth 
of disturbances in the flow in the local region where the coherent structure develops. 
If this were true then the instantaneous largest Lyapunov exponent should have a 
large positive maximum when coherent structures develop. Similarly, when coherent 
structures form, perturbations to the flow should grow in regions where the coherent 
structures appear. These statements can be tested by calculating the largest 
Lyapunov exponent h(t) and observing the spatial character of the perturbation 
flow, as described in the previous section. Such calculations show there is no 
correlation between maxima or minima of h(t)  and the appearance or disappearance 
of secondary vortex structures. Instead, large maxima and minima of h(t)  are 
correlated with maxima and minima of the magnitude of the spanwise shear 
occurring on either of the upflow region of the primary pair of vortices, just as 
discussed in the previous section for weakly chaotic flow a t  Re = 4.5Rec. Large 
maxima in h(t) occur when no secondary vortices are present, and secondary vortices 
do not necessarily form after a large maxima in A ( t ) .  Similarly, secondary vortex 
structures appear without any maxima in h(t)  occurring prior to or during their 
formation, and secondary vortices were observed to live their life over a period when 
h(t) is near a large negative minimum. When no structures are present a t  the time 
when h(t) has a large positive maximum, perturbations to the base flow are found to 
have significant energy only in the same localized regions of large spanwise v, shear 
on either side of the upflow region near y = -4 as found for Re = 4.5Rec. Since 
secondary vortices are often born in the downflow region where perturbations from 
the base flow do not grow, the appearance of these secondary vortices is not 
associated with the local growth of the perturbation. When a pair of secondary 
vortices is present a t  the time when h(t)  has a large positive maximum, then the 
upflow region of the structure causes additional spanwise shear regions where the 
perturbation has significant energy. For example, figure 17 ( a )  shows cross-flow 
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FIGURE 17. For Re = 6.7ReC, t = 1038.5 and x = 0.2 are shown (a) vector plots of the cross-flow 
velocities vy and vz; (b)  contours of the kinetic energy of a small-amplitude perturbation to the flow, 
running from 1 x 10-6 to 8 x (c) contours of w, from 0.2 to 1.4 in 
increments of 0.2. 

in increments 1 x 

velocities in a (y, 2)-plane a t  a time when h ( t )  has a large positive maximum and at 
a streamwise location where secondary vortices are present. The kinetic energy of the 
corresponding perturbation flow is shown in figure 17 ( b )  and is seen to be significant 
only in the primary and secondary upflow regions of significant av,/az seen in figure 
17 (c). The secondary vortices thus contribute to the chaos by causing av,/az, but are 
not produced by the spanwise shear that drives the chaos. Since the coherent 
structures observed here are not produced by the local growth of perturbations, then 
they may, for example, be due to the appearance of a heteroclinic or homoclinic 
connection as found in the simple model of boundary-layer coherent structures 
described by Aubry et al. (1988). 

7.2. Time-average projles 
For a quantity v(x, y, z, t ) ,  the time-average profile was obtained in the standard way 
by spatially averaging v a t  fixed y over the periodic x- and z-directions and then 
averaging over time, producing the quantity ~(y). When plotted in wall units, the 
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mean velocity profile K+ = ti/u, satisfies the viscous sublayer linear relation d = y+ 
near both walls and for all Re. For y+ < 3, d / y +  dif€ers by less than 8 YO from 1.0. The 
law of the wall, however, is not satisfied because Re is so low. In wall units, the region 
y < 0 occupies less than 40 wall units at Re = 6.7Ke,. The middle of the channel 
would be only marginally out of the buffer layer if this were a fully turbulent 
boundary layer. As a result, the law of the wall is not valid a t  all at such a low Re. 
The turbulent processes responsible for the log-law relation are not present here. 

At much higher Ke (Re = 11 500 and Re = 35000), and a t  lower Ro (Ro d 0.21) than 
here, Johnston et al. (1972) find that the mean streamwise velocity profile, ~ ( y )  has 
a region where atilay = 2Ko and so the flow in this region is inviscidly neither stable 
nor unstable. (The inviscid criterion for instability in the rotating channel is 
i%/ay-2Ro > 0, cf. Tritton & Davies 1985.) Close examination of the data shows 
that there is no such region of constant atilay, and that atilay = 2Ro only a t  one 
y-location (near y = O ) ,  not a range of y as found by Johnston et al. (1972). 

Time-averaged profiles of the fluctuating velocities show that the transient 
secondary vortices cause velocity fluctuations that are up to 30% greater than at 
lower Re. The secondary vortices also cause increased mixing of momentum near the 
unstable wall, resulting in mean velocity profiles that are approximately 10 % 
greater in the region where the secondary vortices occur. The total shear stress profile 
varies linearly with y for all three Re. 

8. Concluding remarks 
Direct numerical simulation was used to examine the flows leading up to 

turbulence in a rotating channel as the Reynolds number is increased. For the 
rotation rate Ro = 0.5 used here, the first transition with Re increasing beyond that 
for temporally periodic wavy vortices results in a second frequency, w2,  appearing in 
the flow. For all Reynolds numbers, wavenumbers and initial conditions where this 
flow was observed this frequency is not incommensurate ; instead, it is locked with 
the wavy vortex frequency in a ratio that depends on the parameters. Physically this 
new frequency corresponds to slow spanwise motion of the vortices (in addition to  
the streamwise motion of the wavy vortex waves). 

At higher Re near 4.1 Re,, o2 is replaced by a new frequency, w i ,  in the flow that 
produces a modulated wavy vortex flow similar in some ways to modulated wavy 
Taylor vortex flow. Unlike the Taylor-Couette geometry, this modulation frequency 
can frequency lock with the travelling wave frequency. Near Re = 4.2ReC, a third 
frequency appears, yielding a quasi-periodic flow with three incommensurate 
frequencies. At Re = 4.5Re, temporal chaos is present. The flow is not turbulent 
though, since no small-scale structures are present. Calculations of the instantaneous 
largest Lyapunov exponent show that perturbations to the flow grow most/least 
rapidly when the spanwise-shear regions of the streamwise velocity component on 
egher side of the upflow region are strongest/weakest. In  addition, the spatial 
structure of small perturbations to the flow are found to  have significant value only 
in these same localized spanwise-shear regions. The chaos occurring a t  this Re thus 
appears to  be driven by spanwise shear instability of the streamwise velocity 
component. 

At Re = 6.7 Re, (Re = 590), quasi-coherent structures exist near the high-pressure 
(inviscidly unstable) wall of the channel in the form of transient, secondary 
streamwise-oriented vortices like those observed in other turbulent boundary layers. 
The primary vortices remain in the flow, but move about chaotically. The secondary 
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vortices sometimes interact with the primary vortices. The disordered appearance of 
thc reflective flake visualizations of Alfredsson & Persson (1989) a t  Re = 590 but a t  
lower Ro is probably caused by these secondary vortex structures coupled with the 
disordered motion of the primary vortices. 

Despite the presence of turbulent boundary-layer structures a t  Re = 6.7Re,, time- 
average velocity and shear stress profiles are qualitatively determined by the 
primary vortices, with relatively small quantitative effects caused by the secondary 
vortex structures. The mean velocity profile is linear in the viscous sublayer a t  all Re 
considered. However, for the low-Re turbulent channel (Re = 6.7ReC) the mean 
velocity profile does not obey the turbulent log-law relation since the entire 
boundary layer on the high-pressure side occupies less than 40 wall units. 

Calculations of the instantaneous largest Lyapunov exponent for the flow a t  
Re = 6.7Re,, show that the occurrence of the quasi-coherent secondary vortex 
structures is not due to  the growth of small perturbations to the flow. In addition, 
observations of the spatial structure of small perturbations to the flow show that 
such perturbations grow only in the same regions as for the non-turbulent chaotic 
flow observed a t  Re = 4.5Re,, i.e. in the regions of largest spanwise shear of the 
streamwise velocity component that occur on either side of the upflow region. The 
quasi-coherent structures do not usually form here. Thus these structures are not the 
result of the local growth of small disturbances to the flow, but may instead be 
associated with the appearance of a homoclinic or heteroclinic connection in phase 
space. 
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Appendix 
The data in figure 14(a) show 

where k, = 1/3 and k,  = na. Figure 14(c) shows 

where 
t ( k = 0 )  
1 ( k  + 0)’ 

c ( k )  = 

and t(y, k,, k,, t)  is the discrete Fourier transform (in x and x )  of the velocity, defined 
as 
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Figure 14(b)  shows the magnitude of the Chebyshev coefficients la(m)I2 in the 
representation 

32 

V ( X ,  ~9 2 ,  t )  = C a(m, y, 2 ,  t )  Tm(y), (A51 
m-0 

where Tm is the usual mth Chebyshev polynomial. 
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